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Abstract: 

We propose a risk-driven security policy enforcement model using Dempster and Shafer’s calculus of evidence. 

We define security policy, as in [15], to be the acceptable behavior of a system as defined by its owners. We 

assume information security management to have a corporate security policy made of auditable rules for which 

we apply security-monitoring sensors to detect violations of the security policy.  We adopt security objectives 

and features on which security policy is structured and monitored using security sensors configured to generate 

raw data translated into belief structures needed to manage model uncertainty.  

Belief structures are shaped using a tuned membership function that accounts for two generic types of evidence, 

favorable to corporate security or unfavorable to it. The raw data will be translated into belief structures on the 

security sensors, features, and objectives, which are later sequentially fused using Dempster rule to produce the 

corporate security posture and risks. Information security management can then evaluate security risks and 

devise a cost-effective risk-driven security program capable to bring current security risks below prescribed 

policy risks. Cost-effectiveness is achieved by stopping the search for security controls at the first set that 

produces a residual risk below policy risks. 

Our model is intentionally designed in a generic manner, first, to allow for enough flexibility in defining the 

security policy, its features and objectives, and its monitoring process; and secondly, to provide a 

standardizedtemplate that information security management can adapt in the design of a security policy 

enforcement system capable of continual security. Our model will also serve as a mechanism for the validation 

of a security policy and as a risk-driven continual security process. We provide a numerical example to 

demonstrate the working of our evidential model and its claims.  

Keywords: Security policy, security features, layer-based, policy enforcement, Dempster and Shafer theory, 

evidence calculus, belief functions, basic belief assignment, security risk. 
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I. Introduction 

 Security policy is often written to delineate the acceptable behaviors of systems as defined by owners. 

This policy has to be known to all components of the organization’s computing environment, including its 

people, activities, data resources, technology, and networks [15]. It is the responsibility of information security 

management to configure all those components to fully comply with all security policy rules, and apply effective 

security monitoring systems to enforce the security policy.  Moreover, all auditors have to be in agreement with 

information security management on the rules of compliance,  theexact interpretations of security policy rules, 

and allowable security risks as prescribed by owners. This sort of alignment on security policy enforcement 

requirements should be observed by all stakeholders. All components of the computing environmentshould then 

be configured subject to this alignment. The security policy should be modeled with enough flexibility and 

structuredness to allow for feasible enforceability, compliance, and auditability.  

 Often we talk about customers and staff compliance with policy; but it is not always about people. 

However, this type of violations of security policy can be easily tracked and communicated, while on the other 

hand, there are plenty of other violations that take place in computing processes, as  in data resources, 

networking activities, and technology that remain very difficult to define, communicate, monitor, detect, and 

correctas easy as in people-related security policy requirements.  

 When it comes to threats, there are then no differences between security breaches by people, or other 

components of the computing environment, or by information security management configurations faults. All 

these breaches will be translated into security risks that are compared to policy risks as defined by owners. 

When it comes to people, the direct reasons behind violations of the security policy may be attributed to, for 

example, people distrust, unawareness, carelessness, and so on; or there may be indirect reasons, like faults, 

misconfigurations, deficiencies, and vulnerabilities which are very common as violations of security policy. 

Neverthelsess, in order to plan their security policy enforcement effort, information security management 

employ  a diverse range of monitoring and intrusion detection systems, like in SNORT, NIDS, HIDS [2], and 
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similar systems that provide automatic real-time detection of incidents, including security attacks and breaches 

of security policy.There are certainly many challenges fronting information security management in designing 

the organization’s information security policy itself and translating it into auditable security policy rules; and 

certainly even greater challenges in implementing, enforcing, and monitoring this security policy([3], [4], [11]). 

 This paper proposes a generic approach of security policy enforcement that allows for enough 

flexibility for defining the organization security objectives, the monitoring of its security policy rules, and the 

computing of its security posture and risks. We build a model that can serve as a template to design a well-

structured security policy enforcement process. This paper proposes an evidential model for a risk-driven 

security policy enforcement program using Dempster and Safer’s evidence theory ([16], [20]). Raw data is 

processed into evidence that  is  fused, using Dempster Rule, to produce the corporate security posture and the 

corporate security risk based on which information security management can devise a feasible risk-driven 

security program.We define security policy, as in [15], to be the acceptable behavior of a system as defined by 

its owners. Information security management  is assumed to have a corporate security policy made of auditable 

rules for which monitoring sensors are applied to detect any violations of the security policy.  We allow 

information security management to define a set of security objectives on the security policy, and define security 

features for which they implement  monitoring sensors that generate data on policy enforcement [21].  

 Raw data generated by security monitoring sensors are processed using a membership function, as 

shown in Figure 3, that accounts for two generic types of evidence, favorable to corporate security or 

unfavorable to it. Information security management can define the corporate security objectives and reconfigure 

sensors as needed. Sensors can directly relate to security features when security policy rules are directly violated 

by components of the computing environment. Sensors can, for example, also directly monitor hosts, or 

spanning ports that record traffics that pass through monitored switches. There are however, sensors that relate 

to security features indirectly, for example, those sensors that collect http log data on hosts, or those sensors that 

can be configured to sniff tcp traffic on hubs [2]. Security features may be monitored by configuring sensors to 

monitor interfaces connecting routers to the Internet, routers to switches, and routers to hosts [19]. Of course, 

there are not only network-based sensors to apply for security policy monitoring, information security 

management should also monitor for vulnerabilities that compromise security features that lead to violations of 

security policy rules. There are many other types of threats that relate to physical attacks, vulnerabilities that 

lead to data tampering  withnetworking. There are alsothreats related to software attacks that exploit 

vulnerabilities inside IoT applications, and encryption attacks that involve breaking system encryptions [14].  

That is, the monitoring of human interactions with other components of the computing environment is not only 

needed with computing and communication devices, but also needed with physical production assets to mitigate 

functional integrity risks. 

 The raw data will be transformed into belief structures on the security objectives that are later fused 

using Dempster rule to produce the corporate security posture. Information security management can then 

evaluate the company security risks and devise a feasible security program capable to bring the current security 

risks below policy security risks.  

 

II. A brief review of DST evidential theory 
 The Dempster–Shafer theory (DST)  provides a mathematical framework for uncertainty management 

where  all analysts use the same frame of discernment in studying a finite set of  mutually exclusive outcomes 

about their decision domain. This framework is capable of combining evidence from different sources and 

produces a degree of belief, as a belief function, that takes into account all available evidence.The Dempster-

Shafer theory started with Dempster in 1968 as statistical inference, but has been later formalized by Shafer, in 

1976, as a theory of evidence ([5], [6]).  Later after the 1980’s, Smets reshaped it in his Transferable Belief 

Model before it started to see growing development in diverse AI applications in most domains ([17], [18]).  

 In similar decision domains, Dempster and Shafer theory should produce the same decision support as 

in Bayesian reasoning, but it is capable of a superior expressive power when information is incomplete or data is 

not of good quality.In order to model a belief structure for a decision domain with a frame of discernment Ω, we 

let the power set 2
Ω

 contain every mutually exclusive subsets of the frame of discernment Ω. A basic probability 

assignment m is used to allocate a belief value in [0, 1] for every hypothesis defined by the subsets in the frame 

of the discernment, as follows: 

m: 2
Ω
 → [0, 1]; m(Ø)=0; m(A)≥0 for any A in 2

Ω
; ∑A⸦Ω m(A) =1.  

 If x is an unknown quantity with possible values in our frame of discernment Ω, we can add a piece of 

evidence about x using a mass function m on Ω. Any subset A of Ω with a mass greater than zero is called a 

focal set of m. You can see that this is different than in Bayesian theory where probability distributions only 

have singleton focal sets. When we have no evidence on x, we use the vacuous mass function, defined by mΩ(x) 

= 1, which represents a completely uninformative piece of evidence.Upper and lower probability can be 

obtained which will enclose the precise traditional probability the decision maker is seeking. This decision 
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maker’s target is then bounded by two non-additive continuous measures that Dempster and Shafer Theory 

refers to as belief and plausibility. The belief for a subset of interest A is the sum of all the masses of the subsets 

x residing in A; and the plausibility of a subset A is, on the other hand, the sum of all the masses of the subsets x 

intersecting A.  

 A great expansion of Dempster and Shafer Theory is Dempster’s Rule of combination of evidence that 

is capable of computing the fused evidence obtained from multiple sources and the modeling of conflicts.Often, 

bodies of evidence come in small pieces obtained from different independent sources. While these bodies of 

evidences are included in the decision process using belief functions, the totality of the evidence is computed by 

combining the belief functions using Dempster Rule and its extensions. This rule consists of a mapping that 

considers multiple sources and produces a composite source that represents the combined impact of sources as 

one combined measure of belief. Given two independent sources of evidence defined on the same frame of 

discernment Ω and with basic probability assignments m1 and m2, we combine evidence as follows: 

mΩ(A) = ∑BꓵC=A m1(B)m2(C)/(1-K); for A≠Ø 

 Where K= ∑BꓵC=Ø m1(B)m2(C) and mΩ(Ø)=0 

 The parameter K represents the basic probability mass associated with the conflict between m1 and m2. 

It is computed as the sum of the products of the basic probability masses of all the disjoint sets from the tow 

sources of evidence.  

 

III. Our layer-based security policy enforcement process 
 We are proposing a layer-based security policy enforcement approach, as depicted in Figure 1, 

thattranslates the steps information security management follows in adopting a risk-driven continual security 

program.  This approach employs monitoring sensors to collect raw data on the security features used to define 

the organizational security objectives used to determine the security posture of the organization. Information 

security management will then assess security risks in terms of the security posture formerly computed. At a 

final step, information security management will recommend those security controls that are capable of cutting 

risks below the maximum security risks allowed by the corporate security policy as defined by owners. The five 

layers constituting the layered process, depicted in Figure 1, are introduced in this section. 

 The first layer is the security policy enforcement layerwhich is a security policy enforcement 

monitoring component. It applies a set of sensors/indicators {Si}i=1,N.capable to detect violations of security 

policy directly related to the security features {Fj}j=1,M. These sensors will generate raw data q(i,j), i=1,N and 

j=1,M, needed to construct a belief structure on the security features.  

 The second layer is the security feature monitoring layerwhich is  a security feature monitoring 

component in charge of monitoring changes in security features that directly affect the security objectives 

{Ok}k=1,K.  The third layer is the objective-based security assurance layer whichis an objective-based security 

assurance component in charge of monitoring security objectives that directly affect the security posture P of the 

organization and its computing environment. This layer processes the belief structure on the security features to 

produce the belief structure on security objectives. The fourth layer is the security posture management 

layerwhichis a security posture management component in charge of monitoring the security posture of the 

organization. The belief structures on the security objectives computed based on the security features’ belief 

structures are processed to compute the security posture of the organization. The final risk-driven security 

program layer is a risk-driven security program component in charge of devising a security program according 

to security policy requirements. This layer will compute the organization security risk and will define the 

security controls that minimize the organization security risk subject to policy constraints [8].  
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Figure 1: Security policy enforcement layers 

 

 Managing security in a company’s computing environment is an important activity to assure business 

continuity. Nonetheless, most of the information involved in processing information security is just too 

ambiguous to apply formal statistical analysis or Bayesian reasoning. We will however apply Dempster and 

Shafer Theory to model information security management in a corporate computing environment. In order to do 

so, we adopt a risk-driven objective-based information security management approach as shown in Equation 1.  

 

 C = {{P(O(F,S)) → C*(P,R)} → R*, P*}   (1) 

Where C = Security Program; P = Security posture of the computing environment; O = Set of security 

objectives as defined by owners; F = Set of security feature subsets for objectives; S: Sensors; C* = Retained set 

of risk-driven security controls; R = Security risks for objectives; P* = Overall security posture after applying 

C*, R* = Overall security risk corresponding to P*. 

 Also, in order to provide sufficient flexibility to adopters, we modeled security parameters in a generic 

manner where parameters only take two values, favorable to the security of the company or unfavorable to it. 

This is then an open model where the adopter can include any variables that are relevant to the security of the 

company.Our security policy enforcement model enforces security policy rules by maintaining security risks 

produced by security policy violations below a tolerated security risk R
*
prescribed by owners. Security risks are 

computed in a continuous manner and compared to policy risk and every time those security risks surpass this 

security policy risk then information security management proceeds to devising sufficient security controls to 

bring down security risks below policy risk R
*
. Information security management should be able to determine a 

security program C
*
 that minimizes risks below R

*
. Security risks are computed based on evidence obtained on 

the security objectives O, obtained by fusing evidence on security features F, which are in turn assessed based 

on raw data obtained from security monitoring sensors (S).  

 The purpose of the security program C is to define the security controls that maintain a security posture 

P* and the associated risk R* as prescribed in the company’s security policy. In order to do so, we set our 
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security objectives O={Ok}k=1,K as defined in the security policy.  All the security features that are relevant to 

the objective Ok, are monitored by the corporate intrusion detection system or its security policy enforcement 

system.  We assume that the company intrusion detection system or its security policy enforcement system is 

capable to monitor all the security features {Fj}, j=1,M, for all security objectives included in the security 

program. Figure 2 depicts the exchange of evidence among the security policy enforcement layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Evidence exchange among layers 

 

IV. Buildingbeliefstructures 

 We are using is a simple method to construct basic belief assignments from raw data given by sensors 

that generate data associated with various security features planned in our monitoring system. The security 

incidents that triggered the monitoring sensors are associated to the relevant security features of relevant 

security objectives. In this section, we describe a simple way to build mass functions from raw data given by 

sensors and also a way to add temporization to take into account timed evidence which aligns with our efforts of 

continual security management. There are a variety of other methods that can be used in building mass 

functions, like in ([1] [7]), but ours is very simple and intuitive that fits well with our generic evidential model. 

The masses for our generic security parameters are generated directly from the sensors embedded in the security 

monitoring system. The values q(i,j), i=1,N and j=1,M associated with the security featureFjcan be entered in the 

membership functions of Figure 3 in order to produce the belief structure. If we let Ω={v, u}, where v means 

‘favorable to corporate security,’ and u means ‘unfavorable to corporate security,’ and where mΩ is defined as 

mΩ: 2
Ω
→ [0, 1].Then the security monitoring system will generate the sequence <q(i,j), i-1,N;  j=1,M>> that are 

entered in the graphs of Figure 3 to produce the belief structure of the security features Fj, j=1,M. 

 

 
Figure 3: Timed construction of basic belief assignments from raw data 
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V. Model computations 

 Our evidential model achieves two objectives: the validation of security policy, and the enforcement of 

the security policy. We apply a continuous monitoring process for security policy enforcement and a continuous 

assessment of security risks. If the security risk is lower than the security policy tolerated risk as defined by 

owners, then both security policy validation and enforcement are achieved. If the security risks are assessed as 

higher than policy risk then we declare a security problem that could be either due to a security policy problem 

or security policy enforcement problem.We are assuming a set of auditable security policy rules that can be 

monitored using reliable sensors. A feasible combination of a diversified set of intrusion detection subsystems 

can do the job. The sensors will generate raw data needed to produce belief structures on the security features, as 

follows: 

Ω={v, u}; m[Fj]: 2
Ω
 →[1, 2] 

For any 1≤j≤M,  x in 2
Ω
, m[Fj](x) = [[+]i=1,N ] (x) and  m[Fj](Ω) = 1 - m[Fj](v) - m[Fj](u)   

 Where: 

   v:’Favorable to corporate security’ 

   u:’Favorable to corporate security’ 

   Fj: Security objective j, 1≤j≤M 

   Si: Security monitoring sensor i 

   N: Number of security policy  monitoring sensors 

   M: Number of security objectives 

 One can complete the computation using the above equations, and obtain then a more detailed equation 

of the belief structure of the security objective: 

For any k, 1≤j≤K,  

 m[Ok]= [+]j=1,M δ(j,k)m[Fj] 

 m[Fj] = [[+]i=1,N m[Si, q(i,j)]] 

 m[Ok] =  [+]j=1,M δ(j,k)m[Fj] 

  = [+]j=1,M δ(j,k) [+]i=1,N m[Si, q(i,j)] 

  = [+]j=1,M [+]i=1,N δ(j,k)m[Si, q(i,j)] 

  = [+]i=1,N [+]j=1,M δ(j,k)m[Si, q(i,j)] 

 Then, for any k, 1≤j≤K,  

 Ω={v, u}; m[Ok]: 2
Ω
 →[1, 2] 

 For any,  x in 2
Ω
, 

   m[Ok](x) = [[+]i=1,N [+]j=1,M δ(j,k)m[Si, q(i,j)]](x) 

   m[Ok](Ω) = 1 - m[Ok](v) - m[Ok](u)   

 Where: 

   v:’Favorable to corporate security’ 

   u:’Favorable to corporate security’ 

   Ok: Security objective k 

   Fj: Security objective j, 1≤j≤M 

   Si: Security monitoring sensor i 

   N: Number of security policy  monitoring sensors 

   M: Number of security objectives 

 Once we obtained the belief structures of the security objectives, we can still apply Dempster’s Rule to 

fuse all evidence obtained through security monitoring on security objectives and produce the corporate security 

posture and its security risk. AT this point, we have all what we need to compute the security posture and 

current security risks, as follows: 

  m[P]  = [+]i=1,K m[Ok]  

   = [+]i=1,K [+] j=1,M [+]i=1,N δ(j,k) m[Si, q(i,j)]  

   = [+]i=1,N [+] j=1,M [+]i=1,K δ(j,k) m[Si, q(i,j)] 

 That is, we obtain the following belief structure of the security posture m[P]: 

 Ω={v, u} 

 m[Ok]: 2
Ω
 →[1, 2] 

 For any,  x in 2
Ω
, 

   m[P](x) = [[+] i=1,N [+] j=1,M [+] i=1,K δ(j,k) m[Si, q(i,j)]](x) 

   m[P](Ω) = 1 - m[P](v) - m[P](u)   

 Where: 

   v:’Favorable to corporate security’ 

   u:’Favorable to corporate security’ 

   P: Security posture 

   Ok: Security objective k 
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   Fj: Security objective j, 1≤j≤M 

   Si: Security monitoring sensor i 

   N: Number of security policy  monitoring sensors 

   M: Number of security objectives 

 

VI. Risk driven continual security 
 It is important to adopt a continual security approach as recommended by one of the accepted 

standards: ISO 27002, ISO 27001, NIST SP 800-18, NIST SP 800-39, and NIST SP 800-53 ([9], [10], [12], 

[13], [14]). This is achieved through continual enforcement and monitoring of the security policy and continual 

review of the policy and its enforcement and monitoring processes when security risks are estimated below risk 

policy tolerated risks.  

We are now faced with two situations. As shown in Figure 4, the first situation is when current risks are higher 

than policy risks. The second situation is when current risks are lower than policy risks.  In the first situation, we 

need to apply a risk-driven cost-effective security program capable of bringing security risks below policy risks 

as defined by owners. In the second favorable situation, we just continue monitoring the security features and 

objectives to make sure that security risks remain below policy risks.  

 At this point, we have compiled all information needed to devise a security policy enforcement 

program. Any security policy may be translated into auditable rules that can be automatically or semi-

automatically monitored. Information security management defines a set of security monitoring sensors that are 

capable of detecting all types of security policy violations that affect the security features. We recommend 

following a simple template that consists of three simple phases as defined in Figures 5 and 6. This template 

provides a simple framework that information security management can adopt for enforcing their security 

policy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Risk-driven security program 
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Figure 5: Policy enforcement template: Phase A 

 

Figure 6: Policy enforcement template: Phases B and C 



Risk-driven Security Policy Enforcement: An Evidential Model 

DOI: 10.9790/2834-1506010112                               www.iosrjournals.org                                               9 | Page 

VII. Numerical example 
 A security policy is often enforced as a set of auditable rules that can be evaluated in a quick manner. 

The literature provides a variety of methods for the generation of security policy rules []. In our example, we 

assume that we are monitoring our security policy enforcement effort using 5 security features {F1, …, F5}, and 

3 security objectives {O1, O2, O3}, as follows: 

Security Objectives: 

O1: Assure confidentiality 

O2: Assure integrity 

O3: Assure availability 

Security Features: 

F1: Physical security 

F2: Network & system security 

F3: Application security 

F4: Privacy 

F5: Access control 

 

Also assume that we only use security policy enforcement data base where we only detect 7 types of 

policy violations monitored using 7 sensors {S1, …, S7} directly related to the security features above. Our 

security policy enforcement model with its evidence exchange is depicted in Figure 7.   

Layer 1 of the security policy monitoring sensors {S1, …, S7} generate raw data q(i, j), i=1,7 and j=1,5 

that is directed to relevant security features. A sensor Si generates q(i, j) alarms to security feature Fj, j=1,5. This 

indicates the number of times a security policy violation took place that affected the security feature Fj. The 

number q(i, j) is then plugged into the basic belief assignment generator, depicted in Figure 8, to produce 

evidence on the state of the security feature Fj. The relevance of security policy violation alerts to security 

objectives is provided in Table 2. This table gives for every sensor Si the number of alarms q(i,j) relevant to the 

security feature Fj. Evidence on the state of a security feature may be obtained from multiple sensors and then 

combined using Dempster rule of combination to produce a cumulative evidence on the state of the security 

feature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 7: Exchange of evidence among layers for the numerical example 
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Let us start by evaluating the raw data obtained from the security policy enforcement monitoring sensors {S1, 

…, S7}. These numbers q(i,j), i=1,7; j=1,5 are provided in Table 1. These numbers are plugged into the 

membership function, in Figure 8, prescribed to produce the partial belief structures representing partial 

evidence on the states of security features.  

 

 
Figure 8: Belief structure construction for the numerical example 

 These initial belief structures are provided in Table 3. At this point, we have accumulated all initial 

evidence for each security feature, and we can now use Dempster rule to produce the cumulative evidence on 

the state of each security feature as shown in Table 4.  Here are the belief structures obtained after applying 

Dempster rule to available evidence on the states of security features: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 As shown in Tables 1-5, we got a belief structure for the organization’s security posture m[P] on Ω  

with a bba m[P]: 2Ω → [0, 1], such that m[P](v)= 0.710145; m[P](u)= 0.289855; m[P](u+v)= 5.11E-07. The 

organization’s security risk is m[P](u)+m[P](u+v)= 0.289855. 

 Given that this risk is higher than the maximum security risk allowed by the security policy, then there 

is an urgent need to take the appropriate actions to review the security policy and its enforcement process, 

including the model used to monitor security and produce the organization’s security risk. Examples of the 

possible actions the security administrator can take include adding new rules and sensors to enforce them,  

revising existing rules and their enforcement mechanisms, reinforcing weak rules, revising security features, 

security objectives, and the poster as needed, and other corrective, preventives, and recovery actions, as needed. 

 

 

 

Figure 8: Belief structure construction for the numerical example 
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VIII. Conclusion 
 We proposed an evidential model for a risk-driven security policy enforcement process using Dempster 

and Safer Theory. Information security management were assumed to have a corporate security policy made of 

auditable rules for which monitoring sensors are applied to detect violations of the security policy.   We adopted 

security objectives and features on which the security policy is structured. Policy enforcement sensors were 

configured to generate the raw data needed to construct the belief structures needed to manage model 

uncertainty.  

 Belief structures were shaped using a membership function that accounts for two generic types of 

evidence, favorable to corporate security or unfavorable to it. The raw data were needed to be translated into 

belief structures on the security sensors, features, and objectives, that are later sequentially fused using 

Dempster rule to produce the corporate security posture. Information security management can then evaluate the 

company security risk and devise a cost-effective risk-driven security program capable to bring the current 

security risk below policy security risks.  

 Our model was intentionally designed in a generic manner for two reasons:  1) to allow for enough 

flexibility in defining the organization security features and objectives, the monitoring of its security policy 

rules, the computing of its security posture and risks, and the devising of a cost-effective risk-driven security 

program, and 2) to provide a standard template that information security management can adopt in the design of 

a security policy enforcement system capable of continual security. Our model can  also serve as a mechanism 

for the validation of a security policy and as a risk-driven continual security process. We provided a numerical 

example to demonstrate the working of our evidential model and its claims.  

 Future directions to expand this work may be to take advantage of historical data on the security states 

of the computing environment and translate the behaviors of sensors into Poisson arrivals and Bernoulli trails, 

respectively for the occurrence of security incidents and for triggering policy risks. This probabilistic 

information may be very useful in predicting the occurrence of those incidents that elevate security risks above 

policy risks which will trigger information security management controls. Combining available probabilistic 

information and DST evidence in our model may produce a better security policy enforcement process. 
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